402 PHYSICS

14.20  $T = 2\pi \sqrt{\frac{Vm}{Ba^2}}$  where *B* is the bulk modulus of air. For isothermal changes B = P.

- **14.21** (a)  $5 \times 10^4 \text{N m}^{-1}$ ; (b)  $1344.6 \text{ kg s}^{-1}$
- **14.22** Hint: Average K.E. =  $\frac{1}{T} \int_{0}^{T} \frac{1}{2} m v^2 dt$ ; Average P.E. =  $\frac{1}{T} \int_{0}^{T} \frac{1}{2} k x^2 dt$
- 14.23 Hint: The time period of a torsional pendulum is given by  $T=2\pi\sqrt{\frac{I}{\alpha}}$ , where I is the moment of inertia about the axis of rotation. In our case  $I=\frac{1}{2}MR^2$ , where M is the mass of the disk and R its radius. Substituting the given values,  $\alpha=2.0$  N m rad $^{-1}$ .
- **14.24** (a)  $-5\pi^2$  m s<sup>-2</sup>; 0; (b)  $-3\pi^2$  m s<sup>-2</sup>; 0.4 $\pi$  m s<sup>-1</sup>; (c) 0; 0.5  $\pi$  m s<sup>-1</sup>
- **14.25**  $\sqrt{\left(x_0^2 + \frac{v_0^2}{\omega^2}\right)}$

## Chapter 15

- **15.1** 0.5 s
- 15.2 8.7 s
- 15.3  $2.06 \times 10^4 \,\mathrm{N}$
- **15.4** Assume ideal gas law:  $P = \frac{\rho RT}{M}$ , where  $\rho$  is the density, M is the molecular mass, and

*T* is the temperature of the gas. This gives  $v = \sqrt{\frac{\gamma RT}{M}}$ . This shows that v is:

(a) Independent of pressure.

and hence v increases.

- (b) Increases as  $\sqrt{T}$ .
- (c) The molecular mass of water (18) is less than that of  $\rm N_2$  (28) and  $\rm O_2$  (32). Therefore as humidity increases, the effective molecular mass of air decreases

ANSWERS 403

15.5 The converse is not true. An obvious requirement for an acceptable function for a travelling wave is that it should be finite everywhere and at all times. Only function (c) satisfies this condition, the remaining functions cannot possibly represent a travelling wave.

- **15.6** (a)  $3.4 \times 10^{-4}$  m (b)  $1.49 \times 10^{-3}$  m
- **15.7**  $4.1 \times 10^{-4}$  m
- **15.8** (a) A travelling wave. It travels from right to left with a speed of 20 ms<sup>-1</sup>.
  - (b) 3.0 cm, 5.7 Hz
  - (c)  $\pi/4$
  - (d) 3.5 m
- **15.9** All the graphs are sinusoidal. They have same amplitude and frequency, but different initial phases.
- **15.10** (a)  $6.4 \pi \text{ rad}$ 
  - (b)  $0.8 \, \pi \, \text{rad}$
  - (c)  $\pi$  rad
  - (d)  $(\pi/2)$  rad
- 15.11 (a) Stationary wave
  - (b) l = 3 m, n = 60 Hz, and  $v = 180 \text{ m s}^{-1}$  for each wave
  - (c) 648 N
- **15.12** (a) All the points except the nodes on the string have the same frequency and phase, but not the same amplitude.
  - (b) 0.042 m
- **15.13** (a) Stationary wave.
  - (b) Unacceptable function for any wave.
  - (c) Travelling harmonic wave.
  - (d) Superposition of two stationary waves.
- **15.14** (a) 79 m s<sup>-1</sup>
  - (b) 248 N
- 15.15 347 m s<sup>-1</sup>

Hint:  $v_n = \frac{(2n-1)v}{4l}$ ; n = 1,2,3,... for a pipe with one end closed

15.16 5.06 km s<sup>-1</sup>

404 PHYSICS

- 15.17 First harmonic (fundamental); No.
- 15.18 318 Hz
- **15.20** (i) (a) 412 Hz, (b) 389 Hz, (ii) 340 m  $s^{-1}$  in each case.
- **15.21** 400 Hz, 0.875 m, 350 m s<sup>-1</sup>. No, because in this case, with respect to the medium, both the observer and the source are in motion.
- **15.22** (a) 1.666 cm,  $87.75 \text{ cm s}^{-1}$ ; No, the velocity of wave propagation is  $-24 \text{ m s}^{-1}$ 
  - (b) All points at distances of  $n \lambda$  ( $n = \pm 1, \pm 2, \pm 3,...$ ) where  $\lambda = 12.6$  m from the point x = 1 cm.
- **15.23** (a) The pulse does not have a definite wavelength or frequency, but has a definite speed of propagation (in a non-dispersive medium).
  - (b) No
- **15.24**  $y = 0.05 \sin(\omega t kx)$ ; here  $\omega = 1.61 \times 10^3 \text{ s}^{-1}$ ,  $k = 4.84 \text{ m}^{-1}$ ; x and y are in m.
- **15.25** 45.9 kHz
- 15.26 1920 km
- 15.27 42.47 kHz